Adaptive Computing (... via Timing Error Avoidance)

Gus Uht (*w/Rick Vaccaro*) Dept. of Electrical and Computer Engineering

UNIVERSITY OF Rhode Island

Copyright © 2003-5, A. K. Uht, R. J. Vaccaro Patent applied for. BARC: January 21, 2005

- Three typical goals (alone or combined):
 - 1. ~Maximize performance.
 - 2. ~Minimize power consumption.
 - 3. Adapt to current (or prior) conditions:
 - a. <u>Environmental</u>, e.g., temperature. (current)
 - b. <u>Operational</u>, e.g., power supply voltage. (current)
 - c. <u>Manufacturing</u>, e.g., slower or faster chips. (prior)
- ~All adaptive methods applicable to <u>all.</u>
- "Better-than-worst-case design"

- 1. Adaptive Methods
- 2. Timing Error Toleration
- 3. <u>Timing Error Avoidance</u>
- 4. TEAtime Prototype and Data
- 5. Adaptive Control Systems
- 6. TEAPC & TEA42
- 7. Demo TEA42
- 8. Summary

BARC: January 21, 2005 (Adapti

- Timing Error *Toleration*:
 - Keep changing something (freq., volt.), then:
 - Let error occur, then <u>recover</u>.
 - Change the thing back, repeat.
- Timing Error *Avoidance*:
 - Keep changing something (freq., volt.), then:
 - Stop just <u>before</u> error would occur.
 - Change the thing back, repeat.

BARC: January 21, 2005 (Adaptive Computing)

Timing Error Toleration

- Operation:
 - 1. <u>Speed up clock</u> (resp. <u>reduce voltage</u>) until error occurs.
 - 2. <u>Slow down clock</u> (resp. <u>increase voltage</u>) for no error.
 - 3. Backtrack / repair error.
 - 4. Repeat: GOTO 1.
- Examples:
 - Uht 2000: *TIMERRTOL*: performance ~maximized; not pursued.
 - Austin et al 2003: Razor: power ~minimized; chip fabbed.
- Plusses:
 - True (or better than) perf. max., resp. power min. [<u>within</u> cycle]
- Minuses:
 - Can be costly (TIMERRTOL: 2x cost; Razor: little extra cost)
 - Is complex and hard to design.
 - Can lead to <u>increase</u> in cycles \rightarrow perf. may NOT be true max.

BARC: January 21, 2005 [*Adaptive Computing*]

- **Operation:**
 - <u>Speed up clock</u> (resp. <u>reduce voltage</u>) 'til **just before** error occurs.
 - <u>Slow down clock</u> (resp. <u>increase voltage</u>) for no error. 2.
 - 3. *Repeat: GOTO 1.* [No backtracking or repair needed.]
- **Examples:**
 - Olivieri, et al, 1999 used microcontroller.
 - Uht 2003: *TEAtime*: ~performance maximization; prototype built.
 - One-bit wide slowest-path test logic always errs before real logic does.
- **Plusses:**
 - Close to true performance maximization, resp. power minimization.
 - Simple, easy to design and build. (TEAtime)
 - No increase in cycles.
- Minuses:
 - Shorter papers. (no, wait, that's a plus...)

BARC: January 21, 2005] (*Adaptive Computing*)

TEAtime Prototype

BARC: January 21, 2005

Adaptive Computing

TEAtime Summary

- Performance of prototype improves by >= 34%
- TEAtime provides adaptable frequency control of any synchronous digital system
- Always ~maximizes performance
- Very cheap
- Very easy to add to existing or future designs
- ~Can be adapted to physically existing systems
- <u>It Works!!</u>

- TEAtime:
 - Simple up/down control system 0 delay.
- Skadron, Bahar:
 - Classic feedback control system.
 - In hardware.
- TEAPC, TEA42:
 - Big delays; used as opportunity, not problem.
 - State-space feedback control system.
 - In software; little overhead.

BARC: January 21, 2005 *Adaptive Computing*

TEAPC, TEA42 Goals

- Motivating Goals:
 - Realize TEAtime characteristics in a real computer
 - Adaptive computing
 - Improved performance "Better-than-Worst-Case"
- Additional Goals:
 - 1. Workload adaptation
 - 2. Reduced power consumption
 - 3. Improved reliability
 - 4. Disaster tolerance (always enabled)
 - 5. ...and all in a real machine
- <u>BUT</u>: can't redesign or build Pentium 4's
- <u>SO</u>: use real IBM/Intel-standard PC

BARC: January 21, 2005 (Adaptive Computing)

Current Control System

- Only input is CPU temperature (feedback line).
- Primary output is CPU frequency (N).
 [sometimes: Vcore = f (N)]

TEAxx System Features

- Hardware:
 - No modifications \rightarrow all COTS parts.
 - System: ~3.0 GHz Pentium 4; 800/533 MHz FSB; Intel chipset; 1 GB RAM.
- Software (teapcwin program):
 - Realizes feedback control system.
 - Standard MS Windows application.
 - (Standard OS: W2K SP4; no modifications [of course].)
 - Small: 1.1 megabytes.
 - Fast: < 1% CPU utilization (without display).

BARC: January 21, 2005 *Adaptive Computing*

12 of 19

- Example: CPU Fan dies....
- Changes (automatic, via feedback system):
 - Freq: $3.15 \text{ GHz} \rightarrow 1.5 \text{ GHz}$
 - Vcore: ~1.5 V. \rightarrow ~1.1 V.
 - → Power: ~150 W. → ~90 W. (40% savings)
- CPU temperature stabilizes at safe value (with this CPU).
- System still works.

...and now it's time for the:

DEMO

BARC: January 21, 2005

16 of 19

Overall Summary

- TEAtime, TEAPC & TEA42 realize:
 - 1. Better-than-worst-case performance.
 - 2. *Adaptive* operation to both environment and/or loading.
 - 3. Low-power, high-reliability operation.
 - 4. Disaster tolerance.
- Feedback-control great for a system, too.
- *Adaptive systems* are the way to go.
- <u>They Work!</u>

- Computer, March, 2004 Special Issue.
- My website: <u>www.ele.uri.edu/~uht</u>
- Or μRI website: <u>www.ele.uri.edu/muri</u>

Adaptive Computing (... via Timing Error Avoidance)

Gus Uht (*w/Rick Vaccaro*) Dept. of Electrical and Computer Engineering

UNIVERSITY OF Rhode Island

Copyright © 2003-5, A. K. Uht, R. J. Vaccaro Patent applied for. BARC: January 21, 2005

21. TEAtime Block Diagram.
 22. TEAPC Block Diagram.
 23. TEAPC Components.
 24. [TEAPC] Experiment Setup.

TEAtime Block Diagram

NOTES: $-w, x \gg 1$; -DAC: Digital-to-Analog Convertor; -VCO: Voltage-Controlled Oscillator.

- Timing Error Avoidance system
 - Blue: TEAtime hardware
 - Green: on FPGA

BARC: January 21, 2005 Adaptive Computing

TEAPC Block Diagram

TEAPC Components

PC Component	Manufacturer	Part Number/Description
Motherboard	Gigabyte	GA-8KNXP (Rev. 2); w/DPS regulator
CPU	Intel	P4 3.0 GHz 800 MHz bus
Chipset	Intel	875P, ICH5R
Clock Synthesizer	ICS	ICS952635
Super I/O (Environment Mon.)	ITE	IT8712F V0.6
CPU Volt. Regulator Control	ITE	IT8206R V0.1
Main Memory	Ultra	U10-5903R; 2 x 512 MB; 400 MHz DDR, Dual Channel (Operated at 320 MHz.)
Operating System	Microsoft	Windows 2000 SP4, HT disabled
Disk System – RAID 0+1	ITE	GigaRAID IT8212F
Disks	Maxtor	4 x 6E040L0, 40 GB, 133MHz IDE
Equipment for experiments only		
Fan Controller & Temp. Mon.	Thermaltake	Hardcano 12; for 4 fans, 4 thermocouples
Power Meter	Electronic Educational Devices	watts up? PRO (Note: this is the unit's model name.)
CPU Fan Controller	custom	On/Off, control sel. (MOBO or Hardcano)

BARC: January 21, 2005

Adaptive Computing

Experiment Setup

BARC: January 21, 2005)

Adaptive Computing